Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
R
re3-tensorflow
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Daniel Gordon
re3-tensorflow
Commits
36fb51da
Commit
36fb51da
authored
7 years ago
by
Daniel Gordon
Browse files
Options
Downloads
Patches
Plain Diff
added factory for multiple tracker objects
parent
9a0f24b5
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
tracker/re3_multi_tracker.py
+236
-0
236 additions, 0 deletions
tracker/re3_multi_tracker.py
with
236 additions
and
0 deletions
tracker/re3_multi_tracker.py
0 → 100644
+
236
−
0
View file @
36fb51da
import
cv2
import
glob
import
numpy
as
np
import
os
import
tensorflow
as
tf
import
time
import
sys
import
os.path
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
os
.
path
.
pardir
)))
import
network
from
re3_utils.util
import
bb_util
from
re3_utils.util
import
im_util
from
re3_utils.tensorflow_util
import
tf_util
# Network Constants
from
constants
import
CROP_SIZE
from
constants
import
CROP_PAD
from
constants
import
LSTM_SIZE
from
constants
import
LOG_DIR
from
constants
import
GPU_ID
from
constants
import
MAX_TRACK_LENGTH
SPEED_OUTPUT
=
True
class
Re3TrackerFactory
(
object
):
def
__init__
(
self
):
tf
.
Graph
().
as_default
()
config
=
tf
.
ConfigProto
()
config
.
gpu_options
.
allow_growth
=
True
self
.
sess
=
tf
.
Session
(
config
=
config
)
self
.
is_initialized
=
False
def
create_tracker
(
self
,
gpu_id
=
0
):
tracker
=
Re3Tracker
(
self
,
reuse
=
self
.
is_initialized
,
gpu_id
)
if
not
self
.
is_initialized
:
basedir
=
os
.
path
.
dirname
(
__file__
)
ckpt
=
tf
.
train
.
get_checkpoint_state
(
os
.
path
.
join
(
basedir
,
'
..
'
,
LOG_DIR
,
'
checkpoints
'
))
tf_util
.
restore
(
self
.
sess
,
ckpt
.
model_checkpoint_path
)
self
.
is_initialized
return
tracker
class
Re3Tracker
(
object
):
def
__init__
(
self
,
factory
,
reuse
=
False
,
gpu_id
=
0
):
if
gpu_id
is
not
None
:
os
.
environ
[
'
CUDA_VISIBLE_DEVICES
'
]
=
str
(
gpu_id
)
else
:
os
.
environ
[
'
CUDA_VISIBLE_DEVICES
'
]
=
str
(
GPU_ID
)
self
.
imagePlaceholder
=
tf
.
placeholder
(
tf
.
uint8
,
shape
=
(
None
,
CROP_SIZE
,
CROP_SIZE
,
3
))
self
.
prevLstmState
=
tuple
([
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
None
,
LSTM_SIZE
))
for
_
in
xrange
(
4
)])
self
.
batch_size
=
tf
.
placeholder
(
tf
.
int32
,
shape
=
())
self
.
outputs
,
self
.
state1
,
self
.
state2
=
network
.
inference
(
self
.
imagePlaceholder
,
num_unrolls
=
1
,
batch_size
=
self
.
batch_size
,
train
=
False
,
prevLstmState
=
self
.
prevLstmState
,
reuse
=
reuse
)
self
.
tracked_data
=
{}
self
.
time
=
0
self
.
total_forward_count
=
-
1
# unique_id{str}: A unique id for the object being tracked.
# image{str or numpy array}: The current image or the path to the current image.
# starting_box{None or 4x1 numpy array or list}: 4x1 bounding box in X1, Y1, X2, Y2 format.
def
track
(
self
,
unique_id
,
image
,
starting_box
=
None
):
start_time
=
time
.
time
()
if
type
(
image
)
==
str
:
image
=
cv2
.
imread
(
image
)[:,:,::
-
1
]
else
:
image
=
image
.
copy
()
image_read_time
=
time
.
time
()
-
start_time
if
starting_box
is
not
None
:
lstmState
=
[
np
.
zeros
((
1
,
LSTM_SIZE
))
for
_
in
xrange
(
4
)]
pastBBox
=
np
.
array
(
starting_box
)
# turns list into numpy array if not and copies for safety.
prevImage
=
image
originalFeatures
=
None
forwardCount
=
0
elif
unique_id
in
self
.
tracked_data
:
lstmState
,
pastBBox
,
prevImage
,
originalFeatures
,
forwardCount
=
self
.
tracked_data
[
unique_id
]
else
:
raise
Exception
(
'
Unique_id %s with no initial bounding box
'
%
unique_id
)
croppedInput0
,
pastBBoxPadded
=
im_util
.
get_cropped_input
(
prevImage
,
pastBBox
,
CROP_PAD
,
CROP_SIZE
)
croppedInput1
,
_
=
im_util
.
get_cropped_input
(
image
,
pastBBox
,
CROP_PAD
,
CROP_SIZE
)
feed_dict
=
{
self
.
imagePlaceholder
:
[
croppedInput0
,
croppedInput1
],
self
.
prevLstmState
:
lstmState
,
self
.
batch_size
:
1
,
}
rawOutput
,
s1
,
s2
=
self
.
sess
.
run
([
self
.
outputs
,
self
.
state1
,
self
.
state2
],
feed_dict
=
feed_dict
)
lstmState
=
[
s1
[
0
],
s1
[
1
],
s2
[
0
],
s2
[
1
]]
if
forwardCount
==
0
:
originalFeatures
=
[
s1
[
0
],
s1
[
1
],
s2
[
0
],
s2
[
1
]]
prevImage
=
image
# Shift output box to full image coordinate system.
outputBox
=
bb_util
.
from_crop_coordinate_system
(
rawOutput
.
squeeze
()
/
10.0
,
pastBBoxPadded
,
1
,
1
)
if
forwardCount
>
0
and
forwardCount
%
MAX_TRACK_LENGTH
==
0
:
croppedInput
,
_
=
im_util
.
get_cropped_input
(
image
,
outputBox
,
CROP_PAD
,
CROP_SIZE
)
input
=
np
.
tile
(
croppedInput
[
np
.
newaxis
,...],
(
2
,
1
,
1
,
1
))
feed_dict
=
{
self
.
imagePlaceholder
:
input
,
self
.
prevLstmState
:
originalFeatures
,
self
.
batch_size
:
1
,
}
rawOutput
,
s1
,
s2
=
self
.
sess
.
run
([
self
.
outputs
,
self
.
state1
,
self
.
state2
],
feed_dict
=
feed_dict
)
lstmState
=
[
s1
[
0
],
s1
[
1
],
s2
[
0
],
s2
[
1
]]
forwardCount
+=
1
self
.
total_forward_count
+=
1
if
starting_box
is
not
None
:
# Use label if it's given
outputBox
=
np
.
array
(
starting_box
)
self
.
tracked_data
[
unique_id
]
=
(
lstmState
,
outputBox
,
image
,
originalFeatures
,
forwardCount
)
end_time
=
time
.
time
()
if
self
.
total_forward_count
>
0
:
self
.
time
+=
(
end_time
-
start_time
-
image_read_time
)
if
SPEED_OUTPUT
and
self
.
total_forward_count
%
100
==
0
:
print
'
Current tracking speed: %.3f FPS
'
%
(
1
/
(
end_time
-
start_time
-
image_read_time
))
print
'
Current image read speed: %.3f FPS
'
%
(
1
/
(
image_read_time
))
print
'
Mean tracking speed: %.3f FPS
\n
'
%
(
self
.
total_forward_count
/
max
(.
00001
,
self
.
time
))
return
outputBox
# unique_ids{list{string}}: A list of unique ids for the objects being tracked.
# image{str or numpy array}: The current image or the path to the current image.
# starting_boxes{None or dictionary of unique_id to 4x1 numpy array or list}: unique_ids to starting box.
# Starting boxes only need to be provided if it is a new track. Bounding boxes in X1, Y1, X2, Y2 format.
def
multi_track
(
self
,
unique_ids
,
image
,
starting_boxes
=
None
):
start_time
=
time
.
time
()
assert
type
(
unique_ids
)
==
list
,
'
unique_ids must be a list for multi_track
'
assert
len
(
unique_ids
)
>
1
,
'
unique_ids must be at least 2 elements
'
if
type
(
image
)
==
str
:
image
=
cv2
.
imread
(
image
)[:,:,::
-
1
]
else
:
image
=
image
.
copy
()
image_read_time
=
time
.
time
()
-
start_time
# Get inputs for each track.
images
=
[]
lstmStates
=
[[]
for
_
in
xrange
(
4
)]
pastBBoxesPadded
=
[]
if
starting_boxes
is
None
:
starting_boxes
=
dict
()
for
unique_id
in
unique_ids
:
if
unique_id
in
starting_boxes
:
lstmState
=
[
np
.
zeros
((
1
,
LSTM_SIZE
))
for
_
in
xrange
(
4
)]
pastBBox
=
np
.
array
(
starting_boxes
[
unique_id
])
# turns list into numpy array if not and copies for safety.
prevImage
=
image
originalFeatures
=
None
forwardCount
=
0
self
.
tracked_data
[
unique_id
]
=
(
lstmState
,
pastBBox
,
image
,
originalFeatures
,
forwardCount
)
elif
unique_id
in
self
.
tracked_data
:
lstmState
,
pastBBox
,
prevImage
,
originalFeatures
,
forwardCount
=
self
.
tracked_data
[
unique_id
]
else
:
raise
Exception
(
'
Unique_id %s with no initial bounding box
'
%
unique_id
)
croppedInput0
,
pastBBoxPadded
=
im_util
.
get_cropped_input
(
prevImage
,
pastBBox
,
CROP_PAD
,
CROP_SIZE
)
croppedInput1
,
_
=
im_util
.
get_cropped_input
(
image
,
pastBBox
,
CROP_PAD
,
CROP_SIZE
)
pastBBoxesPadded
.
append
(
pastBBoxPadded
)
images
.
extend
([
croppedInput0
,
croppedInput1
])
for
ss
,
state
in
enumerate
(
lstmState
):
lstmStates
[
ss
].
append
(
state
.
squeeze
())
lstmStateArrays
=
[]
for
state
in
lstmStates
:
lstmStateArrays
.
append
(
np
.
array
(
state
))
feed_dict
=
{
self
.
imagePlaceholder
:
images
,
self
.
prevLstmState
:
lstmStateArrays
,
self
.
batch_size
:
len
(
images
)
/
2
}
rawOutput
,
s1
,
s2
=
self
.
sess
.
run
([
self
.
outputs
,
self
.
state1
,
self
.
state2
],
feed_dict
=
feed_dict
)
outputBoxes
=
np
.
zeros
((
len
(
unique_ids
),
4
))
for
uu
,
unique_id
in
enumerate
(
unique_ids
):
lstmState
,
pastBBox
,
prevImage
,
originalFeatures
,
forwardCount
=
self
.
tracked_data
[
unique_id
]
lstmState
=
[
s1
[
0
][[
uu
],:],
s1
[
1
][[
uu
],:],
s2
[
0
][[
uu
],:],
s2
[
1
][[
uu
],:]]
if
forwardCount
==
0
:
originalFeatures
=
[
s1
[
0
][[
uu
],:],
s1
[
1
][[
uu
],:],
s2
[
0
][[
uu
],:],
s2
[
1
][[
uu
],:]]
prevImage
=
image
# Shift output box to full image coordinate system.
pastBBoxPadded
=
pastBBoxesPadded
[
uu
]
outputBox
=
bb_util
.
from_crop_coordinate_system
(
rawOutput
[
uu
,:].
squeeze
()
/
10.0
,
pastBBoxPadded
,
1
,
1
)
if
forwardCount
>
0
and
forwardCount
%
MAX_TRACK_LENGTH
==
0
:
croppedInput
,
_
=
im_util
.
get_cropped_input
(
image
,
outputBox
,
CROP_PAD
,
CROP_SIZE
)
input
=
np
.
tile
(
croppedInput
[
np
.
newaxis
,...],
(
2
,
1
,
1
,
1
))
feed_dict
=
{
self
.
imagePlaceholder
:
input
,
self
.
prevLstmState
:
originalFeatures
,
self
.
batch_size
:
1
,
}
_
,
s1_new
,
s2_new
=
self
.
sess
.
run
([
self
.
outputs
,
self
.
state1
,
self
.
state2
],
feed_dict
=
feed_dict
)
lstmState
=
[
s1_new
[
0
],
s1_new
[
1
],
s2_new
[
0
],
s2_new
[
1
]]
forwardCount
+=
1
self
.
total_forward_count
+=
1
if
unique_id
in
starting_boxes
:
# Use label if it's given
outputBox
=
np
.
array
(
starting_boxes
[
unique_id
])
outputBoxes
[
uu
,:]
=
outputBox
self
.
tracked_data
[
unique_id
]
=
(
lstmState
,
outputBox
,
image
,
originalFeatures
,
forwardCount
)
end_time
=
time
.
time
()
if
self
.
total_forward_count
>
0
:
self
.
time
+=
(
end_time
-
start_time
-
image_read_time
)
if
SPEED_OUTPUT
and
self
.
total_forward_count
%
100
==
0
:
print
'
Current tracking speed per object: %.3f FPS
'
%
(
len
(
unique_ids
)
/
(
end_time
-
start_time
-
image_read_time
))
print
'
Current tracking speed per frame: %.3f FPS
'
%
(
1
/
(
end_time
-
start_time
-
image_read_time
))
print
'
Current image read speed: %.3f FPS
'
%
(
1
/
(
image_read_time
))
print
'
Mean tracking speed per object: %.3f FPS
\n
'
%
(
self
.
total_forward_count
/
max
(.
00001
,
self
.
time
))
return
outputBoxes
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment