Newer
Older
// + Blocks: allocator for raw disk blocks.
// + Files: inode allocator, reading, writing, metadata.
// + Directories: inode with special contents (list of other inodes!)
// + Names: paths like /usr/rtm/xv6/fs.c for convenient naming.
//
//
// This file contains the low-level file system manipulation
// routines. The (higher-level) system call implementations
// are in sysfile.c.
#include "mmu.h"
#include "proc.h"
#include "spinlock.h"
#include "buf.h"
#include "fs.h"
#include "fsvar.h"
// Read the super block.
static void
readsb(int dev, struct superblock *sb)
{
struct buf *bp;
bp = bread(dev, 1);
memmove(sb, bp->data, sizeof(*sb));
brelse(bp);
}
// Zero a block.
static void
bzero(int dev, int bno)
{
struct buf *bp;
bp = bread(dev, bno);
memset(bp->data, 0, BSIZE);
bwrite(bp);
brelse(bp);
}
bp = 0;
readsb(dev, &sb);
for(b = 0; b < sb.size; b += BPB){
bp = bread(dev, BBLOCK(b, sb.ninodes));
for(bi = 0; bi < BPB; bi++){
m = 1 << (bi % 8);
if((bp->data[bi/8] & m) == 0){ // Is block free?
bp->data[bi/8] |= m; // Mark block in use on disk.
bwrite(bp);
brelse(bp);
return b + bi;
}
// Inodes.
//
// An inode is a single, unnamed file in the file system.
// The inode disk structure holds metadata (the type, device numbers,
// and data size) along with a list of blocks where the associated
// data can be found.
//
// The inodes are laid out sequentially on disk immediately after
// the superblock. The kernel keeps a cache of the in-use
// on-disk structures to provide a place for synchronizing access
// to inodes shared between multiple processes.
//
// ip->ref counts the number of pointer references to this cached
// inode; references are typically kept in struct file and in cp->cwd.
// When ip->ref falls to zero, the inode is no longer cached.
// It is an error to use an inode without holding a reference to it.
//
// metadata and contents when holding the inode's lock,
// represented by the I_BUSY flag in the in-memory copy.
// Because inode locks are held during disk accesses,
// they are implemented using a flag rather than with
// spin locks. Callers are responsible for locking
// inodes before passing them to routines in this file; leaving
// this responsibility with the caller makes it possible for them
// to create arbitrarily-sized atomic operations.
//
// To give maximum control over locking to the callers,
// the routines in this file that return inode pointers
// return pointers to *unlocked* inodes. It is the callers'
// responsibility to lock them before using them. A non-zero
struct {
struct spinlock lock;
struct inode inode[NINODE];
} icache;
void
iinit(void)
{
initlock(&icache.lock, "icache.lock");
}
// Try for cached inode.
empty = 0;
for(ip = &icache.inode[0]; ip < &icache.inode[NINODE]; ip++){
if(ip->ref > 0 && ip->dev == dev && ip->inum == inum){
ip->ref++;
if(empty == 0 && ip->ref == 0) // Remember empty slot.
empty = ip;
ip = empty;
ip->dev = dev;
ip->inum = inum;
ip->ref = 1;
// Increment reference count for ip.
// Returns ip to enable ip = idup(ip1) idiom.
ip->type = dip->type;
ip->major = dip->major;
ip->minor = dip->minor;
ip->nlink = dip->nlink;
ip->size = dip->size;
memmove(ip->addrs, dip->addrs, sizeof(ip->addrs));
brelse(bp);
ip->flags |= I_VALID;
if(ip->ref == 1 && (ip->flags & I_VALID) && ip->nlink == 0){
ip->flags |= I_BUSY;
release(&icache.lock);
itrunc(ip);
ip->type = 0;
iupdate(ip);
acquire(&icache.lock);
ip->flags &= ~I_BUSY;
void
iunlockput(struct inode *ip)
{
iunlock(ip);
iput(ip);
}
// Allocate a new inode with the given type on device dev.
for(inum = 1; inum < sb.ninodes; inum++){ // loop over inode blocks
memset(dip, 0, sizeof(*dip));
dip->type = type;
panic("ialloc: no inodes");
// Copy inode, which has changed, from memory to disk.
dip->type = ip->type;
dip->major = ip->major;
dip->minor = ip->minor;
dip->nlink = ip->nlink;
dip->size = ip->size;
memmove(dip->addrs, ip->addrs, sizeof(ip->addrs));
// Inode contents
//
// The contents (data) associated with each inode is stored
// in a sequence of blocks on the disk. The first NDIRECT blocks
// If there is no such block, alloc controls whether one is allocated.
static uint
{
if(!alloc)
return -1;
ip->addrs[bn] = addr = balloc(ip->dev);
}
return addr;
if(!alloc)
return -1;
ip->addrs[INDIRECT] = addr = balloc(ip->dev);
}
bp = bread(ip->dev, addr);
a = (uint*)bp->data;
brelse(bp);
return -1;
}
a[bn] = addr = balloc(ip->dev);
}
brelse(bp);
return addr;
}
panic("bmap: out of range");
}
// Only called after the last dirent referring
// to this inode has been erased on disk.
{
ip->addrs[i] = 0;
}
}
bp = bread(ip->dev, ip->addrs[INDIRECT]);
a = (uint*)bp->data;
if(a[j])
bfree(ip->dev, a[j]);
}
brelse(bp);
st->dev = ip->dev;
st->ino = ip->inum;
st->type = ip->type;
st->nlink = ip->nlink;
st->size = ip->size;
readi(struct inode *ip, char *dst, uint off, uint n)
if(ip->major < 0 || ip->major >= NDEV || !devsw[ip->major].read)
return -1;
if(off + n > ip->size)
n = ip->size - off;
bp = bread(ip->dev, bmap(ip, off/BSIZE, 0));
m = min(n - tot, BSIZE - off%BSIZE);
memmove(dst, bp->data + off%BSIZE, m);
brelse(bp);
writei(struct inode *ip, char *src, uint off, uint n)
if(ip->major < 0 || ip->major >= NDEV || !devsw[ip->major].write)
if(off + n < off)
return -1;
if(off + n > MAXFILE*BSIZE)
n = MAXFILE*BSIZE - off;
bp = bread(ip->dev, bmap(ip, off/BSIZE, 1));
m = min(n - tot, BSIZE - off%BSIZE);
memmove(bp->data + off%BSIZE, src, m);
struct buf *bp;
struct dirent *de;
if(dp->type != T_DIR)
for(de = (struct dirent*)bp->data;
de < (struct dirent*)(bp->data + BSIZE);
if(poff)
*poff = off + (uchar*)de - bp->data;
// Write a new directory entry (name, ino) into the directory dp.
// Look for an empty dirent.
for(off = 0; off < dp->size; off += sizeof(de)){
if(readi(dp, (char*)&de, off, sizeof(de)) != sizeof(de))
de.inum = ino;
if(writei(dp, (char*)&de, off, sizeof(de)) != sizeof(de))
// Copy the next path element from path into name.
// Return a pointer to the element following the copied one.
// The returned path has no leading slashes,
// so the caller can check *path=='\0' to see if the name is the last one.
// If no name to remove, return 0.
while(*path == '/')
path++;
if(*path == 0)
return 0;
len = path - s;
if(len >= DIRSIZ)
memmove(name, s, DIRSIZ);
while(*path == '/')
path++;
return path;
}
// If parent != 0, return the inode for the parent and copy the final
// path element into name, which must have room for DIRSIZ bytes.
if(parent && *path == '\0'){
// Stop one level early.
struct inode*
namei(char *path)
{
char name[DIRSIZ];
return _namei(path, 0, name);
}